

St Edmund's Catholic Primary School Calculation Policy 2014

Y 1			
Through practical activities in meaningful contexts and informal writt			
methods.			
- Recall number bonds to 20 and within 20 .			
- Pictures and Marks -1 more / 2 more.			
There are 3 cars in the garage. 1 more came along.			

Terry has 3 apples and Tony has 2 apples. How many altogether?

- Number lines to 20.

- Derive related facts to 20 .

$$
\begin{aligned}
& \square=5+4 \\
& 5+4=\square \\
& \square+4=9 \\
& \square+\square=9
\end{aligned}
$$

- Money and addition up to 20 p.

- Read, write and interpret mathematical statement involving addition (+) and equals (=).

Video clips:

Using a range of equipment and strategies to reinforce addition statements

National Curriculum requirements:

Add 1 digit and 2 digit numbers to 20 , including 0.

Through practical activities in meaningful contexts and informal written methods.

- Fluent recall of bonds to 20 and within 20.
- Derive and use related facts up to 100 .
- Addition of money up to $£ 1$.

- Add numbers using concrete objects, pictorial representations and mentally.

- Show that addition of two numbers can be done in any order (commutative).
- Recognise and use the inverse relationship between addition and subtraction.
- Progressing to partitioned column method (in preparation for year 3).

National Curriculum requirements:

(using concrete objects, pictorial representations and mentally)
Add 2 digit numbers and ones.
Add 2 digit number and tens.
Add two 2 digit numbers.
Add three 1 digit numbers.

- Continue with partitioned column method.
- Introduce expanded column addition.

Progressing to the compact column method.

TO	HTO	TO	HTO	TO	HTO
23	315	94	561	47	237
$+\frac{42}{65}$	$+\underline{624}$	$+\frac{73}{939}$	$\underline{167}$	$\underline{1279}$	$+\frac{75}{72}$
$\underline{1}$		$\frac{516}{753}$			

- Add money using both $£$ and pence in practical contexts.

Video clip:

Demonstration of expanded 3 digit column addition

National Curriculum requirements:

Add numbers with up to 3 digits, using the formal written method of column addition.

Y4

- Continue with column addition.

+	H T O	+	H T O	+	Th H T O
	371		376		2388
	485		485		1124
	856		861		3512
	1		11		11

- Estimate and use inverse operations to check answers to a calculation.
- Add money using both $£$ and pence in practical contexts.

National Curriculum requirements:

Add numbers with up to 4 digits, using the formal written method of column addition.

- Continue to use column addition, adding numbers with more than 4 digits.
$\begin{array}{r}32879 \\ +\quad 3987 \\ \hline 68866 \\ \hline\end{array}$
- Addition of money and decimals.

$E 23$
$+5 \cdot 5$
$E \quad 3$
1

$19 \cdot 01$
$3 \cdot 65$
$+0 \cdot 70$
$23 \cdot 36$

National Curriculum requirements:

Add whole numbers with more than 4 digits, using the formal written method of column addition.

- Add several numbers of increasing complexity using column addition.

National Curriculum requirements:

Add whole numbers with more than 4 digits, using the formal written method of column addition.

Key Stage 1 - Subtraction

Y 1
Through practical and meaningful contexts and informal written methods.

- We made 6 cakes. We ate 2 of them.

How many cakes are left?

- Link to vertical number line 6-2 =

- Find the difference within 20

目

- Represent and use number bonds within 20
- Record using subtraction (-) and equals signs (=)
- Derive related facts up to 20 .

$5-2=\square$	$\square=5-2$
$5-\square=3$	$3=\square-2$
$\square-2=3$	$3=5-\square$
$\square-\square=3$	$3=\square-\square$

- Counting back on a 100 square and a vertical number line.

National Curriculum requirements:

Subtract 1 digit and 2 digit numbers up to 20 , including 0 .
Represent and use number bonds and related subtraction facts.

Through practical and meaningful contexts.

- Fluent recall of bonds to 20 and within 20 .
- Derive and use related facts up to 100 e.g. $10-7=3$ so $100-70=30$.
- Counting back by partitioning second number. Subtract the ones first to be in line with columnar subtraction
E.g. 46-18

46-10-8

- Find the difference by counting up (only when the difference is small).
$23-18=5$

- Recognise and use the inverse relationship between addition and subtraction
- Show that subtraction is not commutative (done in any order)
- Progressing to the partitioned columnar method in preparation for year 3
- Subtraction of money, including change.

National Curriculum requirements:
(using concrete objects, pictorial representations and mentally)
Subtract 2 digit numbers and ones.
Subtract 2 digit number and tens.
Subtract two 2 digit numbers.
Subtract three 1 digit numbers.

Y3

- Continue with vertical number line subtraction progressing to the expanded column subtraction method.

$$
\begin{array}{ll}
89-35=54 & 80+9 \\
-\underline{-30+5} \\
\underline{50+4}=54
\end{array}
$$

- Introduce exchanging through the expanded column subtraction method
72-47

$$
\begin{aligned}
& 60+{ }^{12} 2 \\
& -\underline{40+7} \\
& \underline{20+5}=25
\end{aligned}
$$

- Progressing on to compact column subtraction.

TO	HTO	TOO
47	864	$45^{1} 1$
-23	$\underline{-621}$	$\underline{-36}$
$\underline{24}$	$\underline{15}$	

- Emphasise value of digit, e.g. 4 tens subtract 2 tens $=2$ tens. Use the correct language for subtraction i.e. exchange rather than borrow.
- Subtract amounts of money to give change.

Video clips:

Subtraction - teaching children to consider the most appropriate methods before calculating

Introducing partitioned column subtraction method, from practical to written

National Curriculum requirements:

Subtract numbers with up to 3 digits using the formal written method of column subtraction.

- Continue with partitioned column subtraction progressing to compact column subtraction.

- Estimate and use inverse operations to check answers to a calculation.
- Subtract amounts of money using column method.

Video clips:

Subtraction - teaching children to consider the most appropriate methods before calculating

Introducing partitioned column subtraction method, from practical to written

Moving to the compact column method of subtraction

National Curriculum requirements:

Subtract numbers up to 4 digits using the formal written method of column subtraction.

Y6

- Continue with compact column subtraction, including subtraction of decimals.

- Use rounding to check answers to calculations and to determine, in the context of a problem, levels of accuracy.

Video clip:

Moving to the compact column method of subtraction

National Curriculum requirements:

Subtract numbers with more than 4 digits.

- Continue with compact column subtraction, including subtraction of decimals.

- Use estimation to check answers to calculations and to determine, in the context of a problem, levels of accuracy.

National Curriculum requirements:

Subtract numbers with more than 4 digits.

- There are 2 sweets in one bag. How many sweets are there in 5 bags?

- Counting multiples of coins: $2 p, 5 p, 10 p$.

Through practical activities and meaningful contexts using concrete objects, pictorial representations and arrays.

- Double numbers (by partitioning and recombining) $17+17$.

- Understand multiplication as repeated addition/groups/lots.
- Read arrays.

$$
2 \times 4 \text { (2, } 4 \text { times) }
$$

- Repeated addition on a number line.

$$
2+2+2+2 \quad(4 \text { groups of } 2,2 \text { four times, } 2 \times 4)
$$

- Know the multiplication tables for 2, 5 and 10.
- Calculate mathematical statements within the multiplication tables using the multiplication (x) and equals (=) signs.
- Show that the multiplication of two numbers can be done in any order (commutative).
Video clips: Teaching for understanding of multiplication facts Practical multiplication and the commutative law

National Curriculum requirements:

Solve one step problems involving multiplication, by calculating the answer

National Curriculum requirements:

using concrete objects, pictorial representations and arrays with the support of Solve problems involving multiplication using materials, arrays, mental methods the teacher. and multiplication facts.

Y3

- Recall and use multiplication tables for 3, 4 and 8.
- Continue to use arrays and number lines/Cuisenaire rods for 3,4 and 8 multiplication tables.
- Write and calculate mathematical statements for multiplication. Statements to include the multiplication tables that they know and 2 digit numbers $\times 1$ digit numbers. Pupils use mental methods and progress to formal written methods.
- Introduce grid model.

- Progressing to expanded method of multiplication.

TO
14
X $\quad 5$
20 (5x4)
$+\frac{50}{70}(5 \times 10)$

Video clips: Teaching the grid method as an interim step

(Partitioning and counters to introduce grid)
National Curriculum requirements: Multiply 2 digits by 1 digit, using mental and progressing to formal written methods.

Y4

- Recall and use multiplication tables up to 12×12 (Including multiplying by 0 and 1).
- Continue using grid method and expanded method as appropriate, progressing to short multiplication.

No carrying	Extra digit	Carrying	Zeros	Ext.
T O	H T O	H T O	H T O	H T O
32	51	38	202	$\square 5 \square$
$\times \frac{3}{96}$	$\times \frac{2}{102}$	$\times \frac{7}{266}$	$\times \frac{4}{5}$	$\times \frac{408}{612}$

National Curriculum requirements:

Multiply 2 digits by 1 digit using formal written layout.
Multiply 3 digits by 1 digit using formal written layout.

- Recall and use multiplication tables up to 12×12 (Including multiplying by 0 and 1).
- Continue to practise short multiplication.
- Use Grid Method to introduce long multiplication.

Video clips:

Moving from grid method to a compact method

Reinforcing rapid times table recall

Demonstration of long multiplication

National Curriculum requirements:

Multiply numbers up to 4 digits by a 1 digit number using the formal written method of short multiplication.

Multiply numbers up to 4 digits by a 2 digit number using the formal written method of long multiplication.

Multiple whole numbers and those involving decimals by 10, 100, 1000.

- Recall and use multiplication tables up to 12×12 (Including multiplying by 0 and 1).
- Continue to practise short multiplication.
- Continue to practise long multiplication.

- Multiply decimals using the grid method and progressing on to short multiplication
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Video clips:

Moving from grid method to a compact method

Reinforcing rapid times table recall

Demonstration of long multiplication

National Curriculum requirements:

Multiply up to 4 digits by 2 digits using the formal written method of long multiplication.
Multiply numbers by $10,100,1000$ giving answers up to 3 decimal places.

Y1
Through practical activities in meaningful contexts.
- Division as sharing.
Emphasise the importance of sharing equally.
Share a bag of 15 sweets between 5 children - one for you, one for you,
one for you, one for you, one for me.

12 shared between 3 is 4

- Introduce halving even numbers up to 10 .

Half of 4

National Curriculum requirements:

Solve one step problems involving division, by calculating the answer by using concrete objects, pictorial representations and arrays with the support of the teacher.

Y2

Through practical activities in meaningful contexts.

- Recall and use division facts for 2,5 and 10 times tables.
- Continue to use division as sharing.
- Division as grouping.

- 15 children get into teams of 5 to play a game. How many teams are there?

- Understand ' $\div 2$ ' as 'half of'.
- Understand that division is not commutative.
- Recognise relationship between x and \div

How many 5's have been counted?

- Record using division (\div) and equals (=) signs.

$1 / 2 / 3 / 4 / 5 / 6 / 7 / 18 / 9|10| 11|12| 13|14| 15|16| 17|18| 19|20| 21|22| 23|26| 25|26| 27|28|$ 11111111111111111111111111111

National Curriculum requirements:

Solve problems involving division using materials, mental methods and division facts.

Y3

- Recall and use division facts for 3,4 , and 8 times tables.
- Continue with repeated subtraction on a vertical number line.
- Write and calculate mathematical statements for division using the tables they know.
- Introduce grouping method before short division, encourage children to estimate answers before attempting calculation. Create fact box to encourage efficient grouping e.g. not always groups of $10-1 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}$, 10x, 20x, 50x, 100x

5) $\frac{13}{65}$
$\frac{-50}{15}(5 \times 10)$
$-15(5 \times 3)$

- Introduce short division, with exact answers.

- Progressing to short division involving carrying, with exact answers.

National Curriculum requirements:

Division questions based on multiplication tables they know.
Divide 2 digits by 1 digit, progressing to formal written methods.

Y4

- Recall and use all division facts for all tables up to 12 (Including dividing by 1).
- Continue with short division method.

- Progressing to short division with remainders.

National Curriculum requirements:

Divide 2 digits by 1 digit and 3 digits by 1 digit becoming fluent with formal written method of short division with exact answers and progressing to remainders.

- Consolidate the use of the formal written method of short division.

National Curriculum requirements:

Divide 2 digits by 1 digit.
Divide 3 digits by 1 digit.
Divide 4 digits by 1 digit.
Children interpret the remainders appropriately for the context.
e.g. as fractions, decimals or by rounding
$98 \div 4=98 / 4=24 \mathrm{r} 2=241 / 2=24.5$ rounded to 25
Divide whole numbers and those involving decimals by $10,100,1000$.

- Consolidate short division.
- Children should be able to interpret remainders as whole number remainders, fractions or by rounding, as appropriate for the context.
$98 \div 7$ becomes

$$
\begin{gathered}
1 \quad 4 \\
7 \begin{array}{|c}
9 \\
9
\end{array}
\end{gathered}
$$

- Answer: 14
$432 \div 5$ becomes

$$
5 \longdiv { 4 3 ^ { 3 } 2 }
$$

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

- Introduce long division.

$$
\begin{aligned}
& 432 \div 15 \text { becomes } \\
& \begin{array}{ccccc}
& & & 2 & 8 \\
& 5 & \text { r } 12 \\
& & 3 & 3 & 2 \\
& 3 & 0 & 0 \\
& & 1 & 3 & 2 \\
& & 1 & 2 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Answer: 28 remainder 12
$432 \div 15$ become

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

Answer: 28.8
N.B: The above examples are taken from the National Curriculum for Mathematics appendix.

National Curriculum requirements:

Divide numbers up to 4 digits by a 2 digit number using the formal written method of short division where appropriate.

Divide up to 4 digits by a 2 digits whole number using the formal written method of long division.

